Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F1(f1(x)) -> G1(f1(x))
G1(g1(x)) -> F1(x)
The TRS R consists of the following rules:
f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F1(f1(x)) -> G1(f1(x))
G1(g1(x)) -> F1(x)
The TRS R consists of the following rules:
f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be strictly oriented and are deleted.
G1(g1(x)) -> F1(x)
The remaining pairs can at least by weakly be oriented.
F1(f1(x)) -> G1(f1(x))
Used ordering: Combined order from the following AFS and order.
F1(x1) = x1
f1(x1) = f1(x1)
G1(x1) = x1
g1(x1) = g1(x1)
Lexicographic Path Order [19].
Precedence:
[f1, g1]
The following usable rules [14] were oriented:
g1(g1(x)) -> f1(x)
f1(f1(x)) -> g1(f1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F1(f1(x)) -> G1(f1(x))
The TRS R consists of the following rules:
f1(f1(x)) -> g1(f1(x))
g1(g1(x)) -> f1(x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.